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The charging free energy of a model diatomic molecule is studied with free energy simulations and continuum
dielectric methods. A comparison of the two methods shows that continuum dielectric theory can successfully
encapsulate the nonlinear solvent responses around the solute if the dielectric boundary is defined by
1/2(Ratom,i + Rgmax,i), whereRatom,i is the atomic radius of solute atomi, andRgmax,i is the first peak position of
the solute atom-solvent atom radial number/charge density distribution function. Furthermore, continuum
dielectric theory in conjunction with the two-sphere description of the dielectric boundary can reproduce
simultaneously the electrostatic solvation free energies, as well as the solvent-induced electrostatic potentials
and field components at the solute sites derived from simulations in the presence of explicit solvent.

Introduction

Continuum dielectric models for solvation assume that the
polar solvent around a solute is a structureless continuous
medium of dielectric constantε.1 Furthermore, they assume that
the solvent-induced electrostatic potential at the solute site
depends linearly on the solute chargeqe. Consequently, the
solvation free energy depends quadratically on the solute charge,
as in the Born model:2

In eq 1R is the radius of the spherical solute cavity. Although
eq 1 is derived assuming linear dielectric response of the solvent,
in reality solvent molecules that interact strongly with the polar
solute are highly structured, causing the solvent dielectric
permittivity near the solute to be lower than the bulk value.3-9

Thus, the solvent response cannot be “linear” in real molecular
systems and the effects are collectively known as nonlinear
dielectric responses.

For spherical systems the nonlinear responses of the solvent
in continuum theory can be obtained from eq 1 either by
adjustingR10,11 or by finding appropriate distance-dependent
functional forms forε that can mimic the dielectric behavior of
the solvent around the charge.12-15 For molecular systems, the
radii that determine the dielectric boundary are often treated as
empirical variables. However, radii that have been adjusted to
reproduce experimental hydration free energies based on
continuum models often fail to reproduce the corresponding
experimental entropies (i.e., the temperature dependence of the
free energy)16 as well as solvation free energies in non aqueous
solvents.17 These adjusted radii also fail to yield accurate
solvent-induced electrostatic potentials and fields at solute
charge sites, as shown by simulation and finite-difference
Poisson studies on the hydration of a water molecule.6 Thus, it
is important to connect the radii that determine the dielectric

boundary to the molecular properties of the solute and solvent
so that they represent the underlying physics of the system.
However, most works on molecular solvation employing
generalized Born models,18 (or implicit solvation models)
discuss various ways of varying these radii,19-21 rather than
providing a molecular basis for the adjusted radii.

The nonlinear responses of the solvent arise mainly from
electrostriction and dielectric saturation.3,4,6,22,23Both effects
originate from the same molecular phenomena but act in
opposite directions. Strong solute-solvent interactions cause
the solvent molecules to come closer to the solute charge, thus
reducing the excluded volume of the solute (electrostriction).
At the same time, they immobilize water orientations near the
solute, thereby decreasingε near the solute (dielectric saturation).
The Born model with R ) Rion (the bare ionic radius)
incorporates the extreme effects of electrostriction since the
solute volume cannot decrease beyond the ionic cavity as the
ion is treated as a hard-sphere in the Born model (Figure 1a).
The corresponding free energy,∆Gion

Born (with R ) Rion in eq 1),
oVerestimatesthe magnitude of the observed solvation free
energy.11,24On the other hand, the Born model withR ) Rgmax

(the first peak position of the ion-water oxygen or hydrogen
radial number/charge density distribution function) incorporates
the extreme effects of dielectric saturation since the solventε

has decreased to unity in the annular space between the ion
and the solvent (Figure 1b). In real systems, however,ε cannot
decrease to unity due to solvent electronic polarization. The free
energy,∆Ggmax

Born (with R ) Rgmax in eq 1),underestimatesthe
magnitude of the observed solvation free energy.24

SinceRion and Rgmax describe the two molecular effects of
the solvent around an ion, we tried a linear combination of the
two radii to obtain an “effective” Born radiusReff (i.e., Reff )
aRion + bRgmax) that would incorporate the nonlinear responses
of the solvent. By fitting the parametersa andb to the observed
solvation free energies of ions, of crystal radii varying from
0.4 to 3 Å and charge varying from-3e to +4e, Reff was found
to be well-approximated by the mean ofRion andRgmax;.24 i.e.,
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∆GBorn ) -q2e2

2R [1 - 1
ε] (1)

Reff ) (Rion + Rgmax)/2 (2)
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Substituting eq 2 forR in eq 1 and rewriting the free energy in
terms of the Born free energies of the bare-ion sphere∆Gion

Born

and the solvated sphere∆Ggmax
Born gives

Eqs 2 and 3 have important implications. Equation 2 implies
thatReff can be derived from two well-defined and measurable
distances around the ionic center; viz., the ionic radius and the
solvation radius14,25without any adjustable parameters. On the
other hand, eq 3 implies that a geometric combination of two
“linear response” free energies (representing extreme electro-
striction and dielectric saturation in the Born model) can take
into account nonlinear solvent responses. Note that eq 3 is exact
for spherical ions, but it is approximate for molecular solutes.26

It is important to note that theReff in eq 2 depends on the
molecular nature of the solvent and the solution structure of
the polar solute consistent with the thermodynamic state
(temperature, pressure and composition of the solvent viaRgmax).
It can reproduce not only experimental hydration free energies,
but can also yield accurate hydration entropies and enthalpies
of spherical ions24 as well as solvation free energies of spherical
ions in nonaqueous solvents such as dimethyl sulfoxide,
acetonitrile and ethanol.27 Furthermore, the “two-sphere” de-
scription of the effective Born radius could also be applied in
continuum theories to compute the solvation ofnon-spherical
molecules by replacing eq 2 with the following:

whereRatom,i is the atomic radius of solute atomi. By using eq
4 to define the dielectric boundary of model diatomic molecules
of varying interatomic bond distances, hydration free energies
obtained from finite-difference Poisson methods as well as
Kirkwood and Generalized Born models were found to agree

with those derived from free energy simulations in the presence
of explicit water molecules.26

Here, we verify that in continuum models, eq 4 incorporates
the necessary nonlinear molecular solvent effects (see above)
and yields fairly accurate predictions of electrostatic potentials
and corresponding field components. To this end, we studied
the charging of model Na+q-Cs-q molecules with an inter-
nuclear bond distance of 3 Å and partial chargeq ) 0.1, 0.3,
0.5, 0.7, and 1.0e in water. First, molecular dynamics (MD)
simulations were carried out to determine theRgmaxof the solute
atoms. Next, electrostatic solvation free energies and solvent-
induced electrostatic potentials and field components at the
solute charge sites were obtained from finite difference solutions
to the Poisson equation using the “two-sphere” radius (eq 4) to
define the dielectric boundary. These results were compared to
corresponding results derived from molecular simulations with
explicit solvent (ES). They were also compared to results
obtained using the same theory (finite-difference Poisson
methods) but with eitherRatom or Rgmax (instead of their mean)
in defining the dielectric boundary. Finally, the results from
simulations and theory using the “two-sphere” radius (eq 4) were
compared to those expected from a linear solvent response.

Methodology

Solvation Thermodynamic Cycle.The solvation free energy
of a solute (∆Gsolv) can be thought of as a three-step process
(Scheme 1).6

The first step involves discharging the solute in the gas phase;
the corresponding free energy-∆Gelec(gas) represents the free
energy difference between the gas-phase molecule without and
with partial charges. The second step involves solvating the
uncharged solute; the corresponding free energy∆Gcav is the
work done to create the solute cavity in the solvent. The third
step involves recharging the solute in solution; the corresponding
free energy has two components: one due to the solute-solvent
electrostatic forces∆Gelec(sln) and the other due to the internal
electrostatic energy of the solute in solution. The latter is
generally assumed to cancel-∆Gelec(gas) in (most) continuum
dielectric models, which is not necessarily the case since the
solute geometry and thus partial charges in the gas-phase and
in solution need not be the same.28,29 Furthermore, continuum
calculations based on the Born model or numerical solutions to
the Poisson equation neglect the∆Gcav term. Hence, in these
continuum calculations, the net∆Gsolv ≈ ∆Gelec(sln). The latter
can be compared with the corresponding free energies derived
from charging simulations of the molecule using a thermo-
dynamic integration approach (see below).30

Force Field. The van der Waals (vdW) parameters for fully
charged Na+ and Cs-, which have been calibrated to reproduce
the experimental hydration free energies and ion-water dis-
tances of the isolated Na+ and Cs+ ions,24,31 were assigned to
the constituent atoms, Na+q and Cs-q, respectively. Such a
choice removes ambiguity in the atomic radius since the ionic
radii of Na+ and Cs- can now be used for the atomic radii in
eq 4 as the vdW parameters for interaction with TIP3P water

Figure 1. A schematic diagram showing the Born model with (a)R
) Rion, the bare ionic radius, and (b)R ) Rgmax, the first peak position
of the ion-water oxygen or ion-water hydrogen radial number/charge
density distribution function. The preferential orientation of water
molecules around a cation and an anion are illustrated in (c) and (d),
respectively.

∆GCorr )
2∆Gion

Born∆Ggmax
Born

∆Gion
Born + ∆Ggmax

Born
(3)

Reff,i ) (Ratom,i + Rgmax,i)/2 (4)
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have not been changed.24 The simulations employed the TIP3P
model of water whose oxygen and two hydrogen atoms form
three sites with partial chargesqO ) -0.834eandqH ) 0.417e.32

MD Simulations. To estimateRgmax of the solute atoms,
constant volume MD simulations33 of the model Na+q-Cs-q

molecules in TIP3P water32 were performed using the CHARMM
version27 program34 at a mean temperature of 300 K. The solute
was fixed at the center of a previously equilibrated cubic box
of length 25.6 Å containing 560 water molecules at a density
of 1 g/cc. Water molecules that overlapped with the solute atoms
were removed by applying a distance criterion as in previous
work.24 This procedure resulted in the removal of one water
molecule so that the final system contained 559 TIP3P water
molecules and the diatomic solute. The simulations employed
periodic boundary conditions and an atom-basedforce-switching
function to smoothly switch the nonbonded forces to zero at
11.7 Å. The nonbond cutoff was set at 12.8 Å, which is half
the length of the cubic simulation box, and the nonbond pair
list was updated every 10 steps. The leapfrog Verlet algorithm
was used with a time step of 2 fs. Each system was equilibrated
for 20 ps and subjected to 100 ps of production dynamics, from
which Na and Cs radial distribution functions (rdfs) were
computed (see Simulation Analyses below).

Free Energy Simulations.Electrostatic solvation free ener-
gies of the model diatomic solutes were obtained from free
energy simulations using the same simulation protocol as
described in the previous section. The free energy for charging
Na0-Cs0 to Na+1e-Cs-1e was computed using thermodynamic
integration withλ ) 0 corresponding to the former (q ) 0) and
λ ) 1 to the latter (q ) 1). It is given by the integral:30,35

where the angular bracket indicates an ensemble average atλ.
The average electrostatic energy is given by

where 〈ΦR〉 is the solvent-induced electrostatic potential at
positionrR of solute siteR. The integration protocol employed
16 window points atλ ) 0, 0.1, 0.125, 0.2, 0.3, 0.4, 0.5, 0.6,
0.65, 0.7, 0.75, 0.8, 0.875, 0.9, 0.95, and 1. At each window
point, the system was equilibrated for 10 ps, followed by 20 ps
of production dynamics. Perturbation energies were collected
every 4 fs for computing the relative free energies. The reverse
perturbations were performed from a configuration that is
independent from the forward perturbation runs. The free
energies for the forward and reverse runs were then averaged.
The free energies at intermediate charge states were extracted
from the perturbation of the (q ) 0, λ ) 0) to (q ) 1, λ ) 1)
state.

Simulation Analyses.The solvation radiiRgmax were com-
puted from the first peak position of the atom-oxygen or atom-
hydrogen rdfsg(r), and used in eq 4 to computeReff, which in
turn were employed to define the dielectric boundary in finite-
difference Poisson calculations (see below). The rdfs were used
to compute distance-dependent electrostatic potentials:36

In eq 7,X denotes oxygen or hydrogen of TIP3P water, and
the summation is based on charge density or charged particle

(P-summation).37-40 If the summation scheme is based on group
or molecule (M-summation) where water molecules are treated
as groups,6,7,37 the electrostatic potential at a distanceR from
the solute siteR is computed from37

In eq 8,N is the number of water molecules,ri,M is the distance
between siteR and the M center of theith water molecule,rRX

is the distance between siteR and theX atom (oxygen or
hydrogen) of theith water molecule, and the angular bracket
denotes an ensemble average.

The electrostatic potentials from eqs 7 and 8 should be equal
if all the charge in the system are considered. However, in
computing pairwise interactions as well as in analyzing simula-
tion trajectories, a spherical cutoff has to be used around the
solute siteR at less than or equal to half the length of the
periodic cubic box. Such a spherical cutoff introduces significant
differences in the potentials computed using eqs 7 and 8,
typically 20 kcal/mol for a Lennard-Jones solute of the size of
methane with a cutoff distance of 10 Å in water (with the oxygen
of water as the M center in eq 8).6,7 Since potentials based on
charge-density summation (eq 7) have been shown to be
incorrect,38,41 the potentials here were computed using eq 8.

Note also that the potentials computed using eq 8 differ
considerably for different choices of the molecular center.37-40

Previous workers have shown that the dipole center of water is
the theoretically correct choice,38 and a physical meaning has
been attributed to the existence of a molecular center for such
potential calculations.41 Hence, potentials were computed using
eq 8 employing the dipole center of TIP3P water as the M
center. It should be noted that the geometric center of TIP3P
water is within 0.1 Å of its dipole center and thus the potentials
and fields computed using these two centers are similar. The
electric field components were obtained from the negative
derivatives of the potentials.

Numerical Solution to Poisson Equation.The Poisson
equation for the electrostatic potentialΦ(r) at positionr is given
by

whereF(r ) is the charge density andε(r ) is a position-dependent
dielectric constant. The electrostatic potentials and fields at the
solute sites due to the continuum solvent medium were obtained
from finite difference solutions to the Poisson equation, as
implemented in the Delphi program.28,42 The calculations
employed a 65 Å× 65 Å × 65 Å grid and a percentage grid
fill of 80%. In conventional Delphi calculations a sphere of the
same size as a water molecule is rolled over the solute surface,
defined by the atomic coordinates and vdW radii of the solute
atoms, to determine the low dielectric, solvent-inaccessible
region. Such a procedure is not needed here since the definition
of the effective Born radii (eq 4) incorporates the solvent
accessibility.26 The solute cavity was defined by eq 4, and the
dielectric constant inside this cavity (εin) was set to 1 while
that outside (εout) was set to 80, the dielectric constant of bulk
water. Although the dielectric constant of TIP3P water is not
80 but approximately equal to 72,43 this difference does not
affect the results here as the electrostatic solvation free energy
is not very sensitive to the external dielectric constant as long
as it is large compared to unity (see eq 1).

The electrostatic potentials and fields were obtained from the
differences in the respective quantities in aqueous solution (εout

ΦR (R) ) ∫0

R
dr〈∑

i)1

N

δ(r - ri,M) ∑
X

qXe

raX
〉 (8)

∇.ε(r )∇Φ(r ) + 4πF(r ) ) 0 (9)

∆Gelec(sln) ) ∫0

1
〈dUelec/dλ〉λ dλ (5)

〈Uelec〉 ) ∑
R ) 1

2

eqR〈ΦR〉 (6)

ΦR (R) ) 4π ∑
X

FX∫0

R
qXe

rRX

gR-X(r)r2 dr (7)
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) 80) and in the gas phase (εout ) 1). The electrostatic solvation
free energies,∆GCS (where the subscript denotes continuum
solvent) were obtained from similar differences in the reaction
field energies. For comparison with∆GCS, electrostatic solvation
free energies were also computed with the dielectric boundary
defined either by the first peak of the atom-solvent rdfs or by
rolling a water molecule over the solute surface defined by
atomic radii.

Results and Discussion

Solvation Structure and Atomic Born Radii. Figure 2
shows how the solvation structural features of the Na+q-Cs-q

molecules change as the chargeq decreases from 1e to 0.1e.
The atom-solvent rdfs are all fully converged, but rdfs up to
only 5 Å are depicted in the figures to show the characteristics
of the first solvation shell that determine the effective Born radii.
The atom-oxygen and atom-hydrogen rdfs for Na+-Cs- exhibit
well-defined structural features with the first peak located at
2.38 Å for Na+ and 2.15 Å for Cs-. As the field at the solute
weakens (corresponding to Na+q-Cs-q molecules withq < 1e),

the first peak of the atom-solvent rdf shifts to a longer distance,
its height decreases while its width increases, reflecting weaker
solute-solvent interactions. The solute atom-solvent distribu-
tions also reflect the orientational preferences of the water
molecules around the positively and negatively charged sites
of the molecule, as evidenced by the first peak positions of the
atom-oxygen and atom-hydrogen rdfs (see Table 1). The water
molecules orient with their oxygens pointing to Na+q and their
hydrogens pointing to Cs-q (Figures 1c,d), thus the effective
radii for Na+q and Cs-q are determined by the first peak
positions of the Na-O and Cs-H rdfs, respectively (Table 1).
Note that the Na-O and Cs-H rdf peak positions are the same
as the corresponding Na-O and Cs-H charge density peak
positions. The orientational preferences of water molecules
around a charge become less important at large ion-water
distances where the water-water interactions dominate. For
example, the Born radii of cations and anions become equal
when the sphere radius exceeds the length scale for which the
ion-water interaction energy is comparable to the thermal
energy.44

The Charge Dependence of the Effective Born Radii.Since
the effective Born radiusReff in eq 4 reflects the nature of the
specific solute-solvent structures, it is determined by the charge
of the solute as well as the molecular nature of the solvent; i.e.,
its molecular structure, composition and bulk solvent densities.
In the present case, the different solvent surroundings are mainly
due to the varying field from the molecule. This charge
dependence is illustrated in Figure 3, where theReff for Na and
Cs (black circles) in Table 1 are plotted as a function of charge,
q/e. The dotted curves in Figure 3 represent best fits of theReff

employing a cubic polynomial. TheReff for Na and Cs decrease
as the field at the solute increases irrespective of whether the
site is positively charged or negatively charged. The observed
decrease inReff reflects mainly the effects of electrostriction,
where water molecules tend tocrowd around the solute atom

Figure 2. The solvation structure around the hypothetical polar Na+q-
Cs-q solute at different charge states, as shown by (a) the Na-O rdf,
(b) the Na-H rdf, (c) the Cs-H rdf, and (d) the Cs-O rdf. The solid
curve (outermost first solvation peak) is for Na+-Cs- while the other
curves in order of decreasing first peak height represent molecules with
q ) 0.7, 0.5, 0.3, and 0.1e, respectively.

TABLE 1: The First Peak Position of the Solute-Oxygen
(Rgmax

O ) or Solute-Hydrogen (Rgmax
H ) rdfs and Effective Born

Radii (Reff) of Na+qe-Cs-qe in Various Charge Statesa

Na Cs

|q| Rgmax
O Rgmax

H Reff
b Rgmax

H Rgmax
O Reff

b

0.1 3.05 3.18 2.02 2.88 3.90 2.27
0.3 2.70 3.18 1.84 2.68 3.55 2.17
0.5 2.58 3.08 1.78 2.40 3.23 2.03
0.7 2.45 3.08 1.72 2.25 3.15 1.95
1.0 2.38 3.03 1.68 2.15 3.08 1.90

a All distances in angstroms.b Using eq 4 andRatom,Na ) Rion,Na )
0.98 Å andRatom,Cs ) Rion,Cs ) 1.65 Å; the error in the computed
effective radii are less than(0.03 Å.

Figure 3. Effective Born radiiReff as a function of charge (q/e) on the
solute atoms. The dotted curves are cubic polynomial fits to theReff

data points for Na and Cs.
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as its charge is increased. However, as the solute charge is
increased beyond 0.8e, the decrease inReff becomes negligible.
The observed saturation inReff reflects the dominant effects of
dielectric saturation at higher charge (q > 0.8e), where
hydrogen-bonding and packing effects lock the orientation of
the water molecules and prevent them from responding to further
increase in solute charge. Such dependencies of the effective
Born radius on solute charge have also been observed by other
workers.3,6,44

Electrostatic Solvation Free Energies, Potentials, and Field
Components. Table 2 gives the electrostatic solvation free
energies∆G, as well as the solvent-induced electrostatic
potentialsΦ and thex component of the solvent fieldsEx at
the solute sites for the Na+q-Cs-q molecules in five charge-
states. (They andzcomponents of the solvent fields at the solute
sites are zero in theory but are nonzero in the simulations due
to solvent packing.6) The statistical errors in the simulation free
energies are estimated to be less than 0.5 kcal/mol (see Table
2). In addition, systematic errors in the simulation free energies
due to the truncation of long-range electrostatic forces are
generally nonnegligible. However, for the systems studied here,
errors due to these effects are likely to cancel since the free
energy difference between two states with the same net (zero)
charge was computed; i.e., the Na+q-Cs-q molecule was
perturbed fromq ) 0 (net charge) 0) to q ) 1 (net charge)
0). Such an expected cancellation of errors had been verified
in our previous work26 for Na+0.5-Cs-0.5 by performing two
sets of calculations; viz., one with a spherical boundary of radius
20 Å and another with the same cubical periodic box as in this
work. The two sets of free energies agree to within 5%.26 On
the other hand, errors in theReff, which are estimated to be about
(0.03 Å, yield corresponding uncertainties in the free energies
obtained from finite-difference Poisson methods of less than
1%. Systematic errors in the electrostatic potentials and fields
due to the truncation of long-range forces have been minimized
by using a relatively large system and long nonbond cutoff.
They are estimated to be less than(2%.

Table 2 shows that Poisson equation with the two-sphere
radius prescription for the dielectric boundary (eq 4) predicts
electrostatic solvation free energies, as well as solvent-induced
electrostatic potentials and field components at the solute sites
in accord with respective simulation values. This is illustrated
in Figure 4, where the simulation data points (filled circles) lie
on or close to the solid lines, representing best fits to the theory
results. Table 2 also shows that the agreement between
electrostatic solvation free energies derived from theory and
simulation improves with increasing solute charge/polarity: the

Figure 4. (a) The electrostatic solvation free energies, (b) solvent-
induced electrostatic potentials at Na and Cs, (c) and thex component
of the electric field at Na, and (d) Cs as a function of the chargeq/e on
the solute atoms. The filled circles are the simulation data points. The
solid, dotted and dashed curves are best fits to the results obtained by
solving Poisson equation with the dielectric boundary defined byReff

(eq 4), byRgmax, and by rolling a water molecule over the solute surface
defined byRatom(see Methods). In Figure 4b, electrostatic potentials at
Cs are positive while those at Na are negative.

TABLE 2: Electrostatic Solvation Free Energies (kcal/mol), Solvent-Induced Electrostatic Potentials (kcal/mol/e) andx
Component of the Electric Fields (kcal/mol/e/Å) from Explicit Solvent (ES) Simulations and Continuum Solvent (CS) Modelsa

∆G Φ at Nab Φ at Csb Ex at Nab Ex at Csb

|q| ES CSc LRc,d ES CS ES CS ES CS ES CS

0.1 -0.4 -0.5 -0.6 -9.6 -6.1 1.8 4.4 2.5 2.8 2.2 2.6
(0.1 (18%) (43%)

0.3 -5.0 -5.5 -5.3 -22.2 -22.3 13.4 14.8 9.5 9.2 7.8 8.6
(0.3 (10%) (7%)

0.5 -15.9 -16.8 -17.0 -40.3 -39.6 27.7 28.7 16.5 16.3 14.8 15.4
(0.3 (6%) (7%)

0.7 -34.3 -35.6 -36.3 -59.0 -59.2 44.6 44.0 26.2 23.4 24.4 22.6
(0.4 (4%) (6%)

1.0 -76.7 -76.6 -80.5 -90.3 -88.7 70.7 66.9 36.8 34.3 33.9 33.2
(0.4 (0.1%) (5%)

a The dielectric boundary is defined by eq 4 (see Methods).b The simulation numbers are computed from eq 8 with summation up to 10 Å and
are based on the water molecule treated as a group with its dipole center as the molecular center (see Methods).c The numbers in brackets are the
percentage deviation from the respective free energy simulation value.d The values are based on the linear response assumption; i.e.,∆G ) (qNaΦES

Na

+ qCsΦES
Cs)/2, where the potentials are obtained from explicit solvent simulations in columns 5 and 7.
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percentage deviation of the continuum solvent free energy from
the respective simulation value is 18% forq ) 0.1e, 10% forq
) 0.3e, 6% for q ) 0.5e, 4% for q ) 0.7e, and 0.1% forq )
1e. The same trend is generally found for the potentials and
field components. A plausible reason for the observed trend is
that the first solvation shells become more structured and the
peak positions in the rdfs are better defined with increasing
solute polarity (Figure 2). Note that nonlinear solvent effects
stemming from electrostriction and dielectric saturation become
dominant at higher solute polarity (see above). Therefore, the
good agreement between theory and simulation results, espe-
cially for high solute charges, indicates that the two-sphere
description of the atomic Born radii can capture these nonlinear
solvent effects in continuum models.

Figure 4 compares the simulation (filled circles) and theory
(solid line) results in Table 2 with corresponding results obtained
by solving Poisson equation with the dielectric boundary defined
either byRgmax(dotted line) or by rolling a water molecule over
the solute surface defined byRatom(dashed line). Figure 4 shows
that the dotted lines and dashed lines deviate from the respective
simulation values and the deviations magnify with increasing
solute polarity, in sharp contrast to the results obtained using
eq 4 (solid line). Similar trends for the electrostatic solvation
free energies were also observed for spherical ions and diatomic
molecules of varying bond distances in previous works.24,26The
present results indicate that the effective Born radius given by
eq 4 appears to be unique in that it could yield fairly accurate
electrostatic solvation free energies, potentials and fields unlike
other choices for the effective Born radius. Figure 4 also shows
that usingRgmax to define the dielectric boundary in finite-
difference Poisson calculations21,45significantlyunderestimates
the magnitude of the electrostatic solvation free energies,
potentials and fields, hence care must be exercised in using such
implicit solvent models in simulations.

Nonlinear Solvent Response.The linear response assumption
means that the solvent-induced electrostatic potential at the
solute atom center is a linear function of the solute charge; i.e.,
ΦLR ≈ kNa/Csqe (see Introduction). Therefore, the electrostatic
solvation free energy is a quadratic function of the solute charge
as in the Born model;1,2 i.e., ∆GLR ≈ k(qe)2 ) (qNaΦNa +
qCsΦCs)/2. The proportionality constantskNa, kCs, andk were
derived from the simulation results for|q| ) 1e since linear
response is a better assumption when the solute fields are strong
rather than weak (see Table 2). These constants were used to
compute∆GLR and ΦLR as a function of solute chargeq/e
(dotted curves in Figure 5). Figure 5 shows that the simulation
results (represented by the solid curves) deviate from linear
response behavior (dotted curves). Such deviations from linear
response have also been observed for many real molecular
solutes like water.6,7 The observed nonlinear dependence of the
potentials and nonquadratic dependence of the solvation free
energies on the solute charge are successfully captured by the
two-sphere description of the dielectric boundary in Poisson
calculations, as evidenced by the closeness of the results (open
circles in Figure 5) to the solid line.

It may seem surprising at first that “continuum” free energies,
derived assuming linear solvent response, appear to account for
nonlinear solvent effects if eq 4 is used to define the dielectric
boundary. This is probably because they can be derived from
two “linear response” free energies, as in eq 3 for spherical
ions. To verify this, two sets of “linear response” free energies,
∆Gatom

CS and ∆Ggmax
CS , were obtained by solving Poisson equa-

tion with the dielectric boundary defined byRatom and Rgmax,
respectively. They were then combined as prescribed by eq 3.

Figure 6 shows that these free energies (filled circles) lie on or
close to the solid line, which is a self-plot of the simulation
free energies. However, the “continuum” free energies predicted
using eq 3 are not as accurate as those predicted using eq 4

Figure 5. The deviations of the computed electrostatic (a) solvation
free energies, and solvent-induced electrostatic potentials at (b) Na and
(c) Cs from their linear response behavior. The solid curve is a third-
order polynomial fit to the simulation data points. The open circles are
data obtained from solving Poisson equation using eq 4 to define the
dielectric boundary. The dotted curve is the behavior that is expected
from a linear response of the continuum solvent; it is obtained from
the force constant estimated from the simulation data for|q| ) 1e (see
text).

Figure 6. Plot of electrostatic solvation free energies obtained from
simulation vs continuum theory. The solid line is the reference line,
i.e., a plot of the simulation free energies vs itself. The open and filled
circles are obtained by solving Poisson equation using eqs 4 and 3,
respectively (see text).
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(open circles in Figure 6), especially as the solute polarity
increases. The observed discrepancy is not unexpected as eq 3
is only approximate for nonspherical molecules since the
presence of partial charges at atomic sites introduces a shielding
contribution to the solvation free energy. Nevertheless, the
results in Figure 6 suggest that, as for spherical ions, nonlinear
solvent responses may be taken into account by some combina-
tion of two “linear response” free energies,∆Gatom

CS and
∆Ggmax

CS . Note that our approach is based on a “purely”
continuum model and is distinct from molecular theories based
on a Gaussian form of the electrostatic potentials.46,47

Conclusions

The results here show that the solute radii that are used to
define the dielectric boundary in continuum dielectric models
can be defined by eq 4 to reflect the specific solution
environment of the solute for a given thermodynamic state. The
effective Born radii are determined by the solute charge (see
Figure 3) as well as the solvent molecular structure, composition,
and bulk density. By using eq 4 to define the dielectric boundary,
continuum dielectric theory can reproduce simultaneously the
electrostatic solvation free energies, as well as solvent-induced
electrostatic potentials and field components at the solute sites
obtained from simulations (to within 10% at high solute polarity,
see Table 2). This was found not to be the case with other
choices of effective solute cavity radii (see Introduction and
Figure 4). In particular continuum dielectric theory usingRgmax

(instead of 1/2Rgmax + 1/2Ratom) to define the solute cavity
significantly underestimatesthe magnitude of the electrostatic
solvation free energies, as well as the solvent-induced electro-
static potentials and field components at the solute sites (Figure
4). Furthermore, by using eq 4 to define the solute cavity,
continuum dielectric theory can also incorporate the nonlinear
solvent responses that are associated with charging a hypotheti-
cal diatomic solute in liquid water. This is evidenced in Figure
5, where the “two-sphere” theory results follow the simulation
results in exhibiting a nonquadratic dependence on charge for
the electrostatic solvation free energy and a nonlinear depen-
dence for the electrostatic potential. The success of the two-
sphere radius (eq 4) in capturing these nonlinear molecular
effects is probably because it incorporates electrostriction and
dielectric saturation in an averaged way in the continuum theory.
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